Lecture 6: Isospin and SU(3)

- The Hadronic Spectrum
- Isospin and Scattering Relations
- ullet Resonances: The Δ
- Strangeness
- Charge and the Gell-Mann Nishijima Eq
- Group Theory Interpretation
- SU(2) and SU(3)
- Quark Model Interpretation

The Hadronic Spectrum

- \exists only 3 generations of leptons (e, μ , τ and their respective neutrinos), but hundreds of hadrons
- Physicists soon realized that it's not sensible to consider these hadrons fundamental
 - Look for basic patterns in masses, spins, charges
 - Look for rules to relate interaction rates and decay rates of different hadrons in terms of internal quantum numbes
- Today we know hadrons are composite particles made of quarks
 - Spectrum of observed particles analog of period table of elements
 - Because α_s large at low mom transfer, the theory is not perturbative
 - We cannot calculate the wave functions of the quark bound states (hadrons)
 - We'll see in a few weeks that bound states of heavy quarks can give us clues to the shape of the potential
- In 1960's no one knew whether quarks were real or just mathematical constructs
 - But we'll use our modern knowledge to inform our discussion and terminology

Classification of Hadrons

- Mesons (integer spin) vs Baryons (half integer spin)
 - Baryons must be pair produced, but mesons can be produced singly

Baryons

- Earliest examples: p and n
- Fact that both appear to see same nuclear force and that the masses are so close together ($m_p=938.20$ MeV, $m_n=939.57$ MeV) make it natural to think of them as 2 states of same particle: the nucleon N
- Define isospin (with same algebra as spin: SU(2)). Then N has $I = \frac{1}{2}$:

$$p = \left| \frac{1}{2} \frac{1}{2} \right\rangle \quad n = \left| \frac{1}{2} - \frac{1}{2} \right\rangle$$

Mesons

- Earliest example: The pions
- Three charges π^+ , π^0 , π^- so I=1:

$$\pi^+ = |11\rangle$$
 $\pi^0 = |10\rangle$ $\pi^- = |1-1\rangle$

• Note: For N, $Q=I_z+\frac{1}{2}$ while for π $Q=I_z$ These are special cases of a more general rule we'll get to soon

Example: πN scattering

- Can use isospin to relate different reaction rates
- Each value of isospin that is possible provides an independent matrix element
- For πN scattering $I=1\otimes I=\frac{1}{2}\Rightarrow I=\frac{3}{2},\frac{1}{2}$ so \exists 2 indep matrix elements

$$\mathcal{M}_{\frac{1}{2}} \equiv \left\langle \frac{1}{2} \middle| H \middle| \frac{1}{2} \right\rangle \quad \mathcal{M}_{\frac{3}{2}} \equiv \left\langle \frac{3}{2} \middle| H \middle| \frac{3}{2} \right\rangle$$

• Examples of decomposition

$$p\pi^{+} = \left| \frac{3}{2} \frac{3}{2} \right\rangle$$

$$p\pi^{0} = \sqrt{\frac{2}{3}} \left| \frac{3}{2} \frac{1}{2} \right\rangle - \sqrt{\frac{1}{3}} \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

and so forth

Thus

$$\begin{split} & \sigma(\pi^+ p \to \pi^+ [) & \sim & |\mathcal{M}_{\frac{3}{2}}|^2 \\ & \sigma(\pi^+ n \to \pi^+ n) & \sim & |\frac{1}{3}\mathcal{M}_{\frac{3}{2}} + \frac{2}{3}\mathcal{M}_{\frac{1}{2}}|^2 \\ & \sigma(\pi^- p \to \pi^0 n) & \sim & |\frac{\sqrt{2}}{3}\mathcal{M}_{\frac{3}{2}} - \frac{\sqrt{2}}{3}\mathcal{M}_{\frac{1}{2}}|^2 \end{split}$$

We can determine all the scattering rates in terms of these 2 amplitudes

More on pN scattering

- Large bumps: "resonances"
- Eg: near 1236 MeV
 - Width $\sim 120~\text{MeV} \Rightarrow$ short lifetime: $\Delta E \Delta t \sim \hbar$:

$$\Delta t \sim \frac{\hbar}{\Delta E} \sim \frac{6.58 \times 10^{-22} \text{ MeV sec}}{120 \text{ MeV}} \sim 5 \times 10^{-24} \text{ sec}$$

This resonance is called the $\boldsymbol{\Delta}$

- Four states: I=3/2: Δ^{++} , Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-}
- ullet There is NO Δ^{--}

Strangeness

- In 1950's a new class of hadrons seen
 - Produced in πp interaction via Strong interactions
 - But travel measureable distance before decay, so decay is weak

Why should this happen? There must be conserved quantum number preventing the strong decay

• Example:

$$\pi^- p \to \Lambda^0 K^0$$

- $\Lambda^0 \to p\pi^-$ with lifetime $\tau=2.6\times 10^{-10}$ sec $K^0 \to \pi^+\pi^-$ with lifetime $\tau=0.8958\times 10^{-10}$ sec
- ullet Assign a new quantum number called strangeness to the Λ and K^0
- ullet By convention Λ has S=-1 and K^0 has S=1 (an unfortunate choice, but we are stuck with it)

Strangeness and I_Z

- ullet We've already seen that within an isospin multiplet, different I_z have different charge
- Can generalize this observation for all light quark (u,d,s)
 multiplets:

$$Q = I_z + \frac{B+S}{2}$$

Define hypercharge $Y \equiv B + S$

- This is called the Gell Mann-Nishijima Eq
- Note: Because Q is determined from I_3 , EM interactions cannot conserve isospin, but do conserve I_3
 - This is analogous to the Zeeman effect in atomic physics where a B field in z direction destroys conservation of angular momentum, but leaves J_z as a good quantum number
- ullet EM coupling $\sim 1\%$ so effects of isospin non-conservation are small and can be treated as perturbative correction to strong interaction

Group Theory Interpretation

- ullet Describe particles with same spin, parity and charge congugation symmetry as members of a multiplet with different I_z and Y
- Will define (next 2 pages) raising and lowering operators to navigate around the multiplet
- Gell Man and Zweig suggested that patterns of multiplets could be explained if all hadrons were made of quarks
 - Mesons: $q\overline{q}$ $3\otimes\overline{3}=1\oplus 8$
 - Baryons: qqq $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$
- In those days, 3 flavors (extension to 6 discussed later)

Introduction to Group Theory (via SU(2))

- Let's start by reviewing SU(2) Isospin
- Fundamental representation: a doublet

$$\chi = \begin{pmatrix} u \\ d \end{pmatrix} \text{ so } u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 Define rotation in isospin space in terms of infinitesmal generators of the rotations

$$\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• The τ matrices satisfy commutation relations

$$\left[\frac{1}{2}\tau_i, \frac{1}{2}\tau_j\right] = i\,\varepsilon_{ijk}\tau_k$$

These commutation relations define the SU(2) algebra

- ullet We can have higher representations of SU(2): $N \times N$ matrices with N=2I+1
- Also, there is an operator that commutes with all the τ's:

$$I^2 = (\frac{1}{2}\vec{\tau})^2 = \frac{1}{4}\Sigma_i \,\tau_i^2$$

and there are raising and lowering operators

$$\tau_{\pm} = \frac{1}{2}(\tau_1 \pm i\tau_2)$$

Extension to SU(3))

 SU(3): All unitary transformations on 3 component complex vectors without the overall phase rotation (U(1))

$$U^{\dagger}U = UU^{\dagger} = 1$$
 det $U = 1$ $U = exp[i \sum_{a=1}^{8} \lambda_a \theta_a / 2]$

ullet The fundamental representation of SU(3) are 3×3 matrices

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Commutation relations:

$$\left[\frac{\lambda_a}{2}, \frac{\lambda_b}{2}\right] = i f_{abc} \frac{\lambda_c}{2}$$

where $f_{123}=1$, $f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2}$, $f_{156}=f_{367}=-\frac{1}{2}$ and $f_{458}=f_{678}=\sqrt{3}/2$.

SU(3) Raising and Lowering Operators

• SU(3) contains 3 SU(2) subgroups embedded in it

Isospin: F_1 F_2 F_3 U - spin: F_6 F_7 $\sqrt{3}F_8 - F_3$ V - spin: F_4 F_5 $\sqrt{3}F_8 + F_3$

- For each SU(2) subgroup we can form the usual raising and lowering operators
- Any two of the three subgroups are enough to navigate through all the members of the multiplet
- Fundamental representation: A triplet

 Define group structure of the state by starting at one corner and using raising and lowering operators

$$(V_{-})^{p+1}\phi_{max} = 0$$
$$(I_{-})^{1+1}\phi_{max} = 0$$
$$structure: (p,q)$$

ullet So quarks (u,d,s) have $p=1,\ q=0$ while antiquarks $(\overline{u},\overline{d},\overline{s})$ have $p=0,\ q=1$

Combining SU(3) states (2 quarks)

• Combining two SU(3) objects gives $3 \times 3 = 9$ possible states

$$uu$$

$$\frac{1}{\sqrt{2}}(ud+du) \qquad \frac{1}{\sqrt{2}}(ud-du)$$

$$dd$$

$$\frac{1}{\sqrt{2}}(us+su) \qquad \frac{1}{\sqrt{2}}(us-su)$$

$$ss$$

$$\frac{1}{\sqrt{2}}(ds+sd) \qquad \frac{1}{\sqrt{2}}(ds-sd)$$

$$\mathbf{6} \qquad \mathbf{3}$$

$$3 \otimes 3 \qquad = \qquad 6 \oplus \overline{3}$$

• We know that the triplet is a $\overline{3}$ from its I_3 and Y:

Combining SU(3) states (a 3rd quark)

•
$$3 \otimes 3 \otimes 3 = 3 \otimes (6 \oplus \overline{3}) = 10_s \oplus 8_{M,S} \oplus 8_{M,A} \oplus 1$$

• Start with the fully symmetric part of the 6:

$$\frac{uuu}{\frac{1}{\sqrt{3}}(ddu + udd + dud)}$$
 3 such states

$$\frac{1}{\sqrt{6}}(dsu + uds + sud + sdu + dus + usd)$$
 1 such state

Ten states that are fully symmetric

• Now, the mixed symmetry part of the **6**:

$$\frac{1}{\sqrt{6}}[(ud+du)u-2uud]$$
 8 such states

Eight states like this

• Now on to the $\overline{3}$:

$$\frac{1}{\sqrt{6}}[(ud-du)s+(usd-dsu)+(du-ud)s]$$
 8 such states

Eight states like this

• Final state, totally antisymmetric

Combining SU(3) states $(q\overline{q})$

- Start with $\pi^+ = u \, \overline{d}$
- Using:

$$I_{-}|\overline{u}\rangle = -|\overline{d}\rangle$$

 $I_{-}|\overline{d}\rangle = +|\overline{u}\rangle$

We find:

$$I_{-} |u\overline{d}\rangle = -|uu\rangle + |dd\rangle$$

$$= \sqrt{2} |I = 1 I_{3} = 0\rangle$$

$$\pi^{0} = \frac{1}{\sqrt{2}} (|d\overline{d}\rangle - |u\overline{u}\rangle)$$

Doing this again: $\pi^- = d \, \overline{u}$

• Now add strange quarks: 4 combinations

$$u\overline{s}$$
 $d\overline{s}$ $\overline{u}s$ $\overline{d}s$
 K^+ K^0 $K^ \overline{K^0}$

• One missing combination:

$$(d\overline{d} + u\overline{u} - 2s\overline{s})/\sqrt{6} \equiv \eta'$$

These 8 states are called an octet

 One additional independent combination: the singlet state

$$(u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{6}$$